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In this paper we derive rigorously the coupling of kinetic equations and their
hydrodynamic limits for a simplified kinetic model. We prove the global con-
vergence of the Chapman–Enskog expansion for this model. We then study the
existence theory and asymptotic behaviour of the coupled systems. To solve the
coupled problems we propose to use the transmission time marching algorithm.
We then develop a convergence theory for the resulting algorithms.
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1. INTRODUCTION

The Boltzmann equation is one of the most important tools in gas dyna-
mics calculations when physical phenomena of a molecular scale cannot be
neglected. In this case the model of continuum hydrodynamics cannot be
any-longer considered valid for the applications. But, when the mean free
path gets too small, the numerical solution of Boltzmann equations
becomes impossible because the discretization step of the associated grids
must be smaller than the mean free path. The classical solution consists
then in replacing the Boltzmann equation by its fluid limit obtained when
the mean free path goes to zero. In this paper we shall study an alternative
method to these classical methods. Our analysis will be done for the linear
Carleman model, which is a simplified model of the Boltzmann equation.
However, to give a motivation for our methodologies, we shall present in
this introduction, a brief discussion based on the full Boltzmann equation.



The hydrodynamical limit theory aims to find the connection between
the Boltzmann equation and the hydrodynamical equations (Euler and
Navier–Stokes equations). This can be formulated as the search of asymp-
totic relationships between solutions of these equations. This connection
results from two types of properties of the collision operator:

(1) Conservation properties and an entropy relation that implies that
the equilibrium distribution corresponds to a Maxwellian for the limit at
the order zero.

(2) The derivative of the collision operator satisfies a formal
Fredholm alternative with a kernel related to the conservation properties
of (1).

The compressible Euler equations are obtained formally using the
conservation properties and the entropy dissipation which are consequen-
ces of the properties of the collision operator. In the Chapman–Enskog or
Hilbert expansion (11) of f in E=Kn the compressible Euler equations are the
leading-order dynamics.

Since the compressible Euler equations generally become singular after
a finite time, (22) any global in time convergence proof cannot rely on
uniform regularity estimates. In ref. 1 assumptions are made on the kinetic
level. The authors assume a formally consistent convergence for the fluid
dynamical moments and entropy of the solution of the kinetic equations.
A more detailed knowledge of the collision operator is needed in order to
obtain the compressible Navier–Stokes equations. These equations arise as
corrections to those of Euler at the next order in the Chapman–Enskog
expansion. Strong hypothesis are needed on the regularity of solutions of
the compressible Navier–Stokes equations in order to make sens of these
expressions. The results available up to now consider only the case of the
full space or periodic domain. (1, 2, 7, 20)

In presence of obstacles boundary conditions must be specified. When
the Knudsen number is extremely small (very dense gas), the classical
hypothesis of no-slip boundary conditions give accurate boundary condi-
tions. However, for the intermediate regimes defined as the regimes for
which the Knudsen number (Kn) which measures the ratio between the
average time separating two successive collisions of a given particle and a
characteristic time of the flow satisfies either:

(a) Kn [ 0.510 −1 or
(b) 0.510 −1 [ Kn [ 10.

In the first case it is assumed that the Knudsen number is not extremely
small (Kn ° 0.510 −1), because otherwise the standard continuous model is
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valid, a breakdown of the aerodynamic theory in the region neighboring
the obstacle (the so-called Knudsen layer) is observed and boundary con-
ditions of slip type must be specified. The Chapman–Enskog expansion (or
any other method based on the use of a finite number of moments) does
not in general satisfy the kinetic boundary conditions. Therefore, this
expansion is not valid in the Knudsen layer which is of width of the order
of the mean free path.

The standard solution is to use analytical slip boundary conditions as
described in refs. 13, 6, and 9. But the constants which are involved are
hard to identify and their validity is questionable. On the other hand, the
direct simulation of the kinetic problem is rapidly too expensive, because it
requires one computational cell per mean free path. To overcome such dif-
ficulties many authors have recently tried to use intermediate asymptotic
models such as Burnett equations. (28) However, in ref. 10 the authors have
shown that the Burnett equations are in violation of the second law of
thermodynamics thus explaining their long history of numerical difficulties.

On the other hand when the mean free path is roughly one thousand
times smaller than the length of the obstacle these asymptotic models are
no-longer valid.

In ref. 23, the author proposed a fundamental strategy that permits
the coupling of different models and/or different approximations to
compute the solution of the exterior domain problem. This strategy has
been applied to the coupling of Boltzmann and Euler or Navier–Stokes
equations. (23–27, 14–19, 3–5) Thus for the solution of intermediate regimes (as
defined above) this method consists of coupling the hydrodynamics equa-
tions (Euler or Navier–Stokes equations) with the Boltzmann equation.
The resulting method involves additional mathematical difficulties related
to the matching of equations of the two models. However, this approach
has several computational and physical advantages. One of the great
advantages is the use of the correct model related to the physical features
of the flow.

The application of this approach to the solution of Boltzmann equa-
tion for external domain problem consists of the following steps

(1) Domain decomposition of the external field into the domains,
possibly overlapped, of validity of Boltzmann equation and of the hydro-
dynamic equations.

(2) Solution of the kinetic equations in the domain of validity of
Boltzmann equation.

(3) Solution of hydrodynamic equations in their domain of validity.
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(4) Coupling of solutions to the two models, the continuous and
kinetic ones.

We should notice here that these methodologies yield coupled
problems through transmission boundary conditions, which are obtained at
the modelling level of the physical phenomena. Therefore these methods
cannot and should not be classified as domain decomposition methods. We
shall develop in the next sections the mathematical foundations of these
methodologies for the Carleman model of Boltzmann equations. In the
next section we shall derive the hydrodynamic limit of the kinetic model
and then prove global convergence of Chapman–Enskog expansion. In
Sections 3 and 4 we shall study these methodologies for the simplified
kinetic model. This includes the existence theory, the asymptotic behavior
and the convergence analysis of the transmission time marching algorithm
applied to these coupled problems.

2. THE KINETIC EQUATIONS AND THEIR HYDRODYNAMIC LIMITS

We consider in this section the following linearized Carleman sys-
tem. (8)

“u
“t

+
“u
“x

=a(v−u) on ]0, 1[×]0, T[, (1)

“v
“t

−
“v
“x

=a(u−v) on ]0, 1[×]0, T[, (2)

u(0, · )=u0 v(0, · )=v0, (3)

u(t, 0)=g(t) v(t, 1)=h(t), (4)

where t ¥ ]0, T[, T > 0, x ¥ [0, 1] and u(t, x), v(t, x) are functions of x
which represent probability densities for particles moving in the positive
and negative x−direction, respectively. a=1

E is a positive constant with E
the mean free path, g(t) and h(t) are two nonegative given functions
describing the boundary data, and u0 and v0 are two nonegative functions
describing the initial data. This model describes a random walk in one
dimension. System (1)–(4) has a unique strong solution. In this section, we
shall derive the hydrodynamic limit of this kinetic model and prove a result
about the convergence of the kinetic model to its hydrodynamic limit as the
mean free path E goes to 0. We introduce the notations

U=5
u

v
6 , M=5

1 0

0−1
6 , U0=5

u0

v0
6 , (5)
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and

Q(U, W)=
1
2

[(u−v)+(w1−w2)] 5
−1

1
6 , (6)

Now Eqs. (1)–(2) can be written as follows

“U
“t

+M
“U
“x

=
1
E

Q(U, U) (7)

The only collision invariant of the collision operator Q(U, U) is
k1=[1, 1]. The fluid moment is then defined as r=Ok1, UP=u+v. The
local Maxwellians correspond to the vector solutions of the equation
Q(W, W)=0. In this case, w1=

1
2 r, w2=

1
2 r. Now let k2 be such that k1

and k2 form a basis for R2: k2=[1,−1]. Introducing m=Ok2, UP=u−v,
we obtain: U=rk1+mk2. Here r corresponds to the fluid component of U
while m is the non-hydrodynamic component. Taking the projection of Eq.
(7) into k1 and k2, we obtain

“r

“t
+
“m
“x

=0 (8)

“m
“t

+
“r

“x
=−

2
E

m (9)

r(x, 0)=u0(x)+v0(x)=g(x) (10)

m(x, 0)=u0(x)−v0(x)=m(x) (11)

The Chapman–Enskog procedure consists in expanding the non-
hydrodynamic component m in a power series of E: m=; n E

nmn. Inserting
this in the equation and comparing terms of like powers (in E), we obtain

m0=0 (12)

“r

“x
=−2m1 (13)

“m1
“t

=−2m2 (14)

“mn
“t

=−2mn+1 (15)
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Combining the above equations and neglecting the terms in E2 we get
“r
“t+E

“m1
“x=0. Hence we have

“r

“t
−

1
2
E
“
2r

“x2
=0 (16)

which corresponds to the first order approximation in the Chapman–
Enskog expansion. This equation is a Navier–Stokes like approximation of
the Carleman equations (1)–(4). Assuming that the solution r of the
hydrodynamic equation (16) is bounded below by a positive constant

r > r0 > 0, (17)

we obtain

minCT r(x, t) [ r(x, t) [maxCT r(x, t) (18)

where CT=C×[0, T]. We shall assume that the boundary terms
minCT r(x, t) and maxCT r(x, t) are independent of T then r is bounded
independently of T. This hypothesis is important for the obtention of the
main theorem of this section.

Since the Chapman–Enskog terms do not satisfy the initial conditions
we shall introduce correcting terms. Let y=t

E , substituting into Eqs.
(8)–(11), we obtain

1
E

“r

“y
(Ey)+

“m
“x

(x, Ey)=0

1
E

“m
“y

(Ey)+
“r

“x
(x, Ey)=−

2
E

m(Ey)

Let r̃ and m̃ be the initial layer solutions and rc, mc denote the
complete solution of Problem (8)–(11): rc=r+r̃, mc=m+m̃. We expand
the initial layer solutions in power solutions of E: r̃=; Enr̃n, m̃=; Enm̃n.
The Chapman–Enskog solutions are expanded in Taylor series around the
point E=0.

r(x, Ey)=r(x, 0)+Ey
“r

“t
(x, 0)+· · ·

mn(x, Ey)=mn(x, 0)+Ey
“mn
“t

(x, 0)+· · ·

(19)

260 Tidriri



We also write

r(x, 0)=g0(x)+Eg1(x)+· · ·

mn(x, 0)=m (0)
n (x)+Em (1)

n (x)+· · ·
(20)

We then obtain

rc=( r̃0+r(x, 0))+E 1 r̃1+y
“r

“y
(x, 0)2+· · ·

mc=(m̃0+m0(x, 0))+E(m̃1+ym1(x, 0)+· · ·

(21)

Substituting into Eqs. (8)–(11), we obtain

“r̃0

“y
=0,

“r̃1

“y
+
“m̃0
“x

=0

“m̃0
“y

=−2m̃0,
“m̃1
“y

+
“r̃0

“x
=−2m̃1

Subject to the conditions limyQ. r̃0=0 and limyQ. r̃1=0, we have

r̃0(y)=0, m̃0(y)=m̃0(x) e −2y

r̃1=−
1
2
“m̃0

“x
e −2y, m̃1=m̃1(x) e −2y

(22)

Expanding now g and m in power series, we obtain

g(x)=(g0(x)+Eg1(x)+· · · )+( r̃0(0)+Er̃1(0)+· · · )

m(x)=m (0)
0 +m̃0+E(m

(1)
0 +m (0)

1 +m̃1)+· · ·
(23)

Using the relations m0=0 and r̃0=0, we obtain

g(x)=g0(x)+E(g1(x)+r̃1(0))+· · ·

m(x)=m̃0+E(m
(0)
1 +m̃1)+· · ·

(24)

Now we want g(x)=g0(x). So we choose gi such that

g1(x)+r̃1(0)=0, gi(x)=0 -i \ 2 (25)
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Similarly we want m=m̃0. So we choose: m (0)
1 +m̃1=0. We then obtain

g1(x)=−
1
2
“m̃0

“x
=−

1
2
“m

“x

m̃1=−m (0)
1 =m̃1=−

1
2
“g

“x
=−

1
2
“g0

“x

(26)

Since m1=− 1
2
“r
“x , we obtain m1(x, 0)=− 1

2
“r
“x (x, 0)=− 1

2
“g
“x . Hence we have

rc(x, 0)=g(x)=g0

mc(x, 0)=m̃0

r̃0(y)=0

m̃0(y)=m̃0(x) e −2y

r̃1(y)=−
1
2
“m̃0

“x
e −2y

m̃1=m̃1(x) e −2y

Now assume that: rc=r+Er̃1+E2u, mc=m̃0+Em1+E2v, satisfy the
equations

“rc

“t
+
“mc

“x
=0

“mc

“t
+
“rc

“x
=−

2
E

mc

Using the equation “r
“t+E

“m1
“x=0, we obtain

E
“r̃1

“t
+E2

“u
“t

+
“m̃0
“x

+E
“m̃1
“t

+E2
“v
“x

=0

“r̃1

“y
+
“m̃0
“x

+E
“m̃1
“t

+E2 1 “u
“t

+
“v
“x
2=0
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This yields

“u
“t

+
“v
“x

=−
1
E

“m̃1
“x

(27)

On the other hand, we have

E2
“v
“t

+E2
“u
“x

=−
“m̃0
“t

− E
“m1
“t

− E
“m̃1
“t

−
“r

“x
− E
“r̃1

“x
−

2
E

m̃0−2m1−2m̃1−2Ev
(28)

Since “m̃0
“t =

1
E
“m̃0
“y=− 2

E m̃0 and m1=− 1
2
“r
“x , we obtain

“v
“t

+
“u
“x

=−
2
E

v−
2
E2

m̃1−
1
E

“m1
“t

−
1
E

“m̃1
“t

−
1
E

“r̃1

“x

=−
2
E

v−
1
E

“m1
“t

−
1
E

“r̃1

“x

=−
2
E

v−
1
E

W(x, t) (29)

Therefore u and v satisfy the following system of equations

“u
“t

+
“v
“x

=−
1
E

“m̃1
“x

“v
“t

+
“u
“x

=−
2
E

v−
1
E

W(x, t)

We now derive the boundary conditions for the error equations

r(x, 0)=g(x)+Eg1m1=−
1
2
“r

“x

m1(x, 0)=−
1
2
“g

“x
−

1
2
E
“g1

“x
“m1
“E

=−
1
2
“g1

“x

Since mc(x, 0)=m̃0=m, we have

m̃1=−m (1)
1 m̃2=−m (1)

1 (term in E2)
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This yields the initial data for the error equations

u(x, 0)=0, v(x, 0)=−m (1)
1 (h)

where

m (1)
1 (h)=

“m1
“E

(hE)

is the remainder in the Taylor expansion of m1(x, 0) around the point
E=0. The function m (1)

1 (h) is bounded and continuous. Now set
w=1

2 uk1+
1
2 vk2 then Eqs. (8)–(11) become

“w1
“t

+
“w1
“x

=
1
2
1 −1
E

“m̃1
“x

−
2
E

v−
1
E

W 2

“w1
“t

−
“w1
“x

=
1
2
1 −1
E

“m̃1
“x

+
2
E

v+
1
E

W 2

Hence we have

“w
“t

+V
“w
“x

=−
1
2E
1 “m̃1
“x
k1+Wk2 2−

1
E
1 1 −1

−1 1
2 w

=−
1
2E
1 “m̃1
“x
k1+Wk2 2−

1
E

Lw (30)

w(x, 0)=
1
2

v(x, 0) k2=−
1
2

m (1)
1 (h) k2=w0 (31)

Next we give some properties of W and “m̃1
“x . This is stated in the following

lemma.

Lemma 2.1. The functions W and “m̃1
“x satisfy

F
.

0
||W|| dt < CE (32)

F
.

0

>“m̃1
“x
> dt < CE (33)

where || · || denotes the norm in C([0, 1]) and C is a constant independent
of E.
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Proof. Using the relation (13) it is enough to prove that r and its
derivatives satisfy (32). Without loss of generality we may assume that
r(0)=r(1)=0. Let j be a positive function to be precised later. Multiply-
ing Eq. (16) by jr and integrating by parts we obtain

1
2

d
dt

F jr2+
1
2
E F j :“r

“x
: 2− E

4
F j'r2=0 (34)

We then have

1
2

d
dt

F jr2−
E

4
F j'r2 [ 0 (35)

We shall construct j such that − E
4 j

'=cj, where c > 0 is a constant to be
precised later. Setting k=> jr2, we obtain

d
dt
k(t)+2ck(t) [ 0 (36)

from which we deduce that

k [ e −2ctk(0) (37)

On the other hand using (17), we obtain

k(t) \ F jr0 (38)

We can choose j > 0 such that c=1
E , j \ a

r
2
0

||r|| with a > 0 indepen-
dent of E, and such that we have

k(t) \ a ||r|| (39)

and

F
.

0
||r|| < CE.

Similarly we prove that

F
.

0

>“r
“x
> < CE, F

.

0

>“r
“t
> < CE, etc · · ·
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From this we conclude that >.0 ||W|| dt <.. The proof of the second
inequality in the lemma is a consequence of the construction of m̃0 and m̃1.
The lemma is proved.

We shall now study the problem (30)–(31). This problem has a mild
solution in the Banach space B=C[0, 1]×C[0, 1]. In fact, the operator
AEw=V “w

“x+
1
E Lw for w ¥ D(AE) where

D(AE)={f ¥ B; f ¥ C1}

has a closure ĀE that generates in B a two-parameter family of contractions
V(t, s). More precisely we have the lemma

Lemma 2.2. The closure ĀE generates in B a two-parameter family
of contractions V(t, s).

The proof of this lemma is similar to the proof of a similar lemma
stated in ref. 21. The operators V(t, s) allow us to write Problem (30)–(31)
in the integral form

w(t)=V(t, 0) w0−
1
2E

F
t

0
V(t, s) 1 “m̃1

“x
k1+Wk2 2 ds (40)

We have the following lemma.

Lemma 2.3. The problem (40) has a unique solution w(t). Moreo-
ver w satisfies

||w(t)|| [ C

where C is a constant independent of E and T.

Proof. If w is a solution of Problem (40) then using Lemmas 2.1
and 2.2, we obtain

||w(t)|| [ C+
1
2E

F
t

0
|||V(t, s)||| 1>“m̃1

“x
>+||W||2

[ C+
1
2E

F
.

0
|||V(t, s)||| 1>“m̃1

“x
>+||W||2

[ C

The existence and uniqueness of a solution to Problem (40) is a con-
sequence of the theory of Volterra integral equations.
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Combining the last lemmas together with the construction of the
Chapman–Enskog and the initial layer expansions we obtain the following
theorem.

Theorem 2.1. The initial problem (30)–(31) has a mild solution f(t)
on the time interval [0,+.[. The solution f(t) is uniformly bounded in B
for t ¥ [0,+.[. Moreover, we have the following estimate

||f(t)− 1
2(r+Er̃1) k1−

1
2(m̃0+Em1+Em̃1) k2 || [ cE2,

where

1
2 rk1+

1
2 Em1k2

and

1
2 Er̃1k1+

1
2(m̃0+Em̃1) k2

are respectively the Chapman–Enskog expansion and the initial layer
expansion obtained at the beginning of this section.

This result differs from the result in ref. 21 in that it provides global
convergence of the Chapman–Enskog expansion. However, our results are
obtained for a linear model while the results in ref. 21 are obtained for a
nonlinear model.

Remark 2.1. In the next sections we shall consider initial data which
are of the form of a local Maxwellian at t=0. In this case the E-dependence
disappears on the level of the Navier–Stokes equations and the initial layer
corrections are not needed.

3. COUPLING OF KINETIC AND THEIR HYDRODYNAMIC LIMITS:

THE MODEL (a)

Let X=]0, 1[ and X1=]0, h1[, X2=]h1, 1[ (0 < h1 < 1). Assume
now that in X1 the hydrodynamic theory gives poor approximation to the
density of particles, but gives good approximation outside X1. Then we
propose the following physical model consisting of two models: the kinetic
model (here the simplified (Carleman) Boltzmann model) used in X1 and its
hydrodynamic approximation used in X2,

Coupling of Kinetic Equations and Their Hydrodynamic Limits 267



“u1
“t

+
“u1
“x

=a(v1−u1), x ¥ ]0, h1[, t > 0, (41)

“v1
“t

−
“v1
“x

=a(u1−v1), x ¥ ]0, h1[, t > 0, (42)

u1(t, 0)=g(t) v1(t, h1)=
1
2
1 rg+

E

2
“rg

“x
2 (t, h1), t > 0, (43)

“rg

“t
−

1
2
E
“
2rg

“x2
=0, x ¥ ]h1, 1[, t > 0, (44)

rg(h1)=u1(h1)+v1(h1) rg( · , 1)=h(t), t > 0 (45)

u1(0, · )=u10 v1(0, · )=v10, rg(0, .)=rg0 (46)

where g, h, u10, v10, and rg0 are given nonegative data. The transmission
boundary conditions (43) and (45) are obtained using the hydrodynamic
limit analysis performed in Section 2. The resulting model is called the
model (a). Using the analysis of Section 2, it is clear that this model is
rigorously justified. Notice that Problems (41)–(43) and (44)–(45) are only
coupled by their boundary conditions. Therfore they can be solved by two
independent solution techniques. In this section we shall develop the exis-
tence and asymptotic theory for the model (a). We shall also propose an
algorithm for the solution of this coupled problem and then establish its
convergence theory.

3.1. Existence Theory

In this paragraph, we shall study the existence and uniqueness of a
solution for the coupled problem (41)–(46). We shall work in the Hilbert
space

H=(L2[0, h1])2×(L2[h1, 1]),

with the following norm

||(w1, w2, w3)||=(||w1 ||
2
L2[0, h1]+||w2 ||

2
L2[0, h1]+||w3 ||

2
L2[h1, 1])

1
2

268 Tidriri



We have the following result.

Theorem 3.1. Assume that (u10, v10, rg0) ¥ H, then the coupled
problem (41)–(46) has a unique strong solution (u1, v1, rg).

We shall give the proof of this theorem for the homogeneous bound-
ary conditions: g(t) — 0 and h(t) — 0. By a standard argument the proof in
the nonhomogeneous case can be reduced to the homogeneous case.

We introduce an operator A on H as follows

A(w1, w2, w3)=R
w −1+a(w1−w2)

−w −2+a(w2−w1)

− 1
2Ew

'

3

S , (47)

D(A)=˛
(w1, w2, w3) ¥ H | w −1, w −2 ¥ L2[0, h1], andw'3 ¥ L2[h1, 1]

w1(0)=0, w2(h1)=
1
2w3(h1)+

E
4w
−

3(h1), w3(h1)=w1(h1)+w2(h1),

andw3(1)=0

ˇ .
It is clear that D(A) is dense in H. We shall apply the Hille–Yosida

theorem. Let l be a real number and let f ¥ X. We shall study the problem

findw ¥ D(A) solution ofAw+lw=f, (48)

which corresponds to finding w ¥ D(A) such that

w −1+(a+l) w1−aw2=f1, (49)

−w −2+(a+l) w2−aw1=f2, (50)

− 1
2Ew

'

3+lw3=f3, (51)

By a density argument we may assume that f1, f2, and f3 are contin-
uous. By elementary methods we obtain the general solution of System
(49)–(51).

We shall now prove the estimate: ||w||j [
1
l−2 ||f||j -l > 2, where || · ||j

is a norm equivalent to the norm || · || to be precised later. Let j1, j2, and
j3 be three positive functions (of x only) to be precised later. Multiplying
Eqs. (49)–(51) respectively by j1w1, j2w2, and j3w3, integrating by parts,
using Cauchy–Schwarz inequality, and combining the resulting equations,
we obtain
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F 5 a+l
2
j1−

1
2
j −16 w21+

1
2

(j1w
2
1)
h1
0

−
a
2
F j1w22+F 5 a+l

2
j2+

1
2
j −26 w22−

1
2

(j2w
2
2)
h1
0

−
a
2
F j2w21+F 1 l

2
j3−

E

4
j'3 2 w23+

1
2
E F j3(w −3)2

+
E

4
(j −3w

2
3)
1
h1−

1
2
E(j3w

−

3w3)
1
h1

[
1
2l

F j1f21+
1
2l

F j2f22+
1
2l

F j3f23 (52)

Using the coupling boundary conditions we obtain

1
2

(j1w
2
1)
h1
0 −

1
2

(j2w
2
2)
h1
0 +
E

4
(j −3w

2
3)
1
h1−

1
2
E(j3w

−

3w3)
1
h1

=
1
2
5j1(h1) w21(h1)−j2(h1) w22(h1)+j2(0) w22(0)

−
E

2
j −3(h1) w23(h1)+4j3(h1) w2(h1) w3(h1)−2j3(h1) w23(h1)6

\
1
2
5j1(h1) w21(h1)–(j2(h1)+2j3(h1)) w22(h1)

+j2(0) w22(0)+1 − E
2
j −3(h1)−4j3(h1)2 w23(h1)6 (53)

On the other hand we have

j2(0) w22(0)=j2(0)(w22(0)−w22(h1))+j2(0) w22(h1)

w22(0)−w22(h1)=−2 F
h1

0
w −2w2

=2 1 Fh1
0

f2w2+a F
h1

0
w1w2−(a+l) F

h1

0
w222

[
1
l

||f2 ||
2
0+a F

h1

0
w21
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Pluging this in (52), we obtain

F 5 a+l
2
j1−

1
2
j −1−

a
2
j2(0)−

a
2
j2 6 w21

+F 5 a+l
2
j2+

1
2
j −2−

a
2
j1 6 w22+F 5 l

2
j3−

E

4
j'3 6 w23+

1
2
E F j3(w −3)2

+
1
2
5j1(h1) w21(h1)+(j2(0)−j2(h1)−2j3(h1)) w22(h1)

−1 E
2
j −3(h1)+4j3(h1)2 w23(h1)6

[
1
2l

F j1f21+
1
2l

F j2f22+
1
2l
j2(0) F f22+

1
2l

F j3f23 (54)

We shall construct j1, j2, and j3 such that they are positive functions,
have lower and upper positive bounds independent of l and satisfy

a+l
2
j1−

1
2
j −1−

a
2
j2(0)−

a
2
j2 > A1 > 0

a+l
2
j2+

1
2
j −2−

a
2
j1 > A2 > 0

l

2
j3−

E

4
j'3 > A3 > 0

j2(0)−j2(h1)−2j3(h1) > A4 > 0

−
E

2
j −3(h1)−4j3(h1) > A5 > 0

where A1, A2, A3, A4, A5 are positive constants independent of l. It is then
possible to construct j1, j2, and j3 positive functions bounded below and
above, and independent of l, such that

a+l
2
j1−

1
2
j −1−

a
2
j2(0)−

a
2
j2=

l

2
j1

a+l
2
j2+

1
2
j −2−

a
2
j1=

l

2
j2

−
E

2
j −−3=

Ek
2
j3

Coupling of Kinetic Equations and Their Hydrodynamic Limits 271



and such that all of the above requirements are satisfied and such that
j2 [ j2(0). The constant k is a positive number determined by the con-
struction of these functions. We conclude then that ||w||j [

1
l−2 ||f||j -l > 2,

where ||w||j=> j1w21+> j2w22+> j3w23. The completion of the proof follows
from Hille–Yosida theorem.

3.2. Asymptotic Analysis of the Coupled Systems

We shall assume that there are nonegative constants g and h such that:
limtQ. g(t)=g and limtQ. h(t)=h. We shall also assume that ah1 > 2
(a=1

E). Then we have the following result about the asymptotic behaviour
of the solution of the coupled problem (41)–(46) for large time.

Theorem 3.2. Assume that u10, v10 ¥ L2[0, h1] and rg0 ¥ L2[h1, 1].
Then the solution of the coupled problem (41)–(46) converges as t tends to
+. to the solution of the corresponding steady problem.

Proof. Without loss of generality, we may assume that g=g(t)=0
and h=h(t)=0. Let (us, vs, rs) denote the solution of the steady problem
corresponding to Problem (41)–(46). Such steady solution exists and is
unique. Let ū1, v̄1, and r̄g be defined as follows

ū1=u1−us and v̄1=v1−vs, x ¥ ]0, h1[, t > 0,

r̄g=rg−rs, x ¥ ]h1, 1[, t > 0,
(55)

where (u1, v1, rg) is the solution of the coupled problem (41)–(46). We then
have

“ū1
“t

+
“ū1
“x

=a(v̄1−ū1), x ¥ ]0, h1[, t > 0, (56)

“v̄1
“t

−
“v̄1
“x

=a(ū1−v̄1), x ¥ ]0, h1[, t > 0, (57)

ū1(t, 0)=0 v̄1(t, h1)=
1
2
1 r̄g+

E

2
“r̄g

“x
2 (t, h1), t > 0, (58)

“r̄g

“t
−
E

2
“
2rg

“x2
=0, x ¥ ]h1, 1[, t > 0, (59)

r̄g(t, h1)=ū1(t, h1)+v̄1(t, h1) r̄g(t, 1)=0, t > 0, (60)

ū1(0, · )=ū10 v̄1(0, · )=v̄10 r̄g(0, · )=r̄g0. (61)

We shall omit the bar sign. Let j1, j2 and j3 be three positive func-
tions independent of t to be precised later. Multiplying Eqs. (56), (57) and
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(59) respectively by j1u1, j2v2 and j3rg, integrating over [0, h1] respec-
tively [h1, 1], using Cauchy–Schwarz inequality, and combining the result-
ing inequalities, we obtain

d
dt
5 Fh1

0
(j1u

2
1+j2v

2
1)+F

1

h1
j3r

2
g
6+F

h1

0
(−j1x+a(j1−j2)) u21

+F
h1

0
(j2x+a(j2−j1)) v21+E F

1

0
j3 :
“rg

“x
: 2− E

2
F
1

h1
j'3r

2
g

+
E

2
(j −3r

2
g)
1
h1− E 1j3rg

“rg

“x
2 1
h1

+(j1u
2
1−j2v

2
1)
h1
0 [ 0 (62)

Using the coupling boundary conditions, we obtain

E

2
1 −j −3(h1) r2g(h1)+2j3(h1) rg(h1)

“rg

“x
(h1)2

=−
E

2
j −3(h1) r

2
g(h1)+j3(h1) rg(h1)(4v1(h1)−2rg(h1))

\ 1 − E
2
j −3(h1)−4j3(h1)2 r2g(h1)−2j3(h1) v21(h1) (63)

Moreover, we have

j2(0) v21(0)−2j3(h1) v21(h1)=(j2(0)−2j3(h1)) v21(0)+2j3(h1)(v
2
1(0)−v21(h1))

v21(0)−v21(h1)=−2 F
h1

0

“v1
“x

v1

=−
d
dt

F
h1

0
v21−2a F

h1

0
v21+2a F

h1

0
u1v1 (64)

Combining (62), (63) and (64), we obtain

d
dt
5 Fh1

0
(j1u

2
1+(j2−2j3(h1)) v21)+F

1

h1
j3r

2
g
6

+F
h1

0
(−j1x+a(j1−j2)−2aj3(h1)) u21
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+F
h1

0
(j2x+a(j2−j1)−6aj3(h1)) v21

+E F
1

h1
j3 :
“rg

“x
: 2− E

2
F
1

h1
j'3r

2
g+j1(h1) u21(h1)+(j2(0)−2j3(h1)) v21(0)

+1 − E
2
j −3(h1)−4j3(h1)2 r2g(h1) [ 0 (65)

We shall choose j1, j2 and j3 such that

−j1x+aj1−aj2−2aj3(h1)=k1 on ]0, h1[

j2x+aj2−aj1−6aj3(h1)=k2 on ]0, h1[

−
E

2
j'3=

Ek
2
j3 on ]h1, 1[

j2(0)−2j3(h1) > 0

−
E

2
j −3(h1)−4j3(h1) > 0

j2 > 2j3(h1)

where k1 and k2 are positive constants. It is possible to choose k1 > 0,
k2 > 0 and k > 0, and construct j1, j2, and j3 positive functions, bounded
below and above such that all of the above requirements are satisfied. The
conclusion of the proof of the theorem is then a consequence of Gronwall
lemma. We then obtain the exponential decay as t goes to . of the solution
(u1, v1, rg).

3.3. Convergence Analysis of the Transmission Time

Marching Algorithm

In this paragraph, we shall propose an algorithm for the solution of
the coupled problem (41)–(46). We then prove that the resulting algorithm
converges. As in the previous section we shall assume that there are
nonegative constants g and h such that: limtQ. g(t)=g and limtQ. h(t)=h.
We shall also assume that ah1 > 2 (a=1

E).
Applying the transmission time marching algorithm to Problem

(41)–(46), we obtain

274 Tidriri



u1 n+1−un1
Dt

+
dun+11

dx
=a(vn+11 −un+11 ) on ]0, h1[, (66)

vn+11 −vn1
Dt

−
dvn+11

dx
=a(un+11 −vn+11 ) on ]0, h1[, (67)

un+11 (0)=0, vn+11 (h1)=
1
2
1 rn+1g +

E

2
“rn+1g

“x
2 (h1) (68)

rn+1g −rng
Dt

−
1
2
E

d2rn+1g

dx2
=0 on ]h1, 1[, (69)

rn+1g (h1)=un1(h1)+vn1(h1), rn+1g (1)=0, (70)

and the initial conditions

u01=u10, v01=v10, r0g=rg0 (71)

Here, without loss of generality, we assume that g=g(t)=0 and
h=h(t)=0. The convergence of the algorithm (66)–(71) is stated in the
following theorem.

Theorem 3.3. The algorithm (66)–(71) converges as n tends to ..

Proof. Introducing the notations u1=un+11 , v1=vn+11 , f1=un1, g1=vn1,
rg=r

n+1
g , and fg=r

n
g, the algorithm (66)–(71) becomes

˛
bu1+u −1=av1+cf1 on ]0, h1[,

bv1−v −1=au1+cg1 on ]0, h1[,

u1(0)=0 v1(h1)=
1
2
1 rg(h1)+

E

2
drg
dx

(h1)2
(72)

˛crg−1
2
E

d2rg
dx2

=cfg on ]h1, 1[,

rg(h1)=f1(h1)+g1(h1) rg(1)=0,

(73)

with the initial conditions (71). Here, we have used the notation b=a+ 1
Dt

and c= 1
Dt . Let j1, j2, and j3 be three positive functions bounded below

and above to be precised later. Multiplying the equations in (72) and (73)
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respectively by j1u1, j2v1, and j3rg, integrating respectively over [0, h1]
and [h1, 1], and using Cauchy–Schwarz inequality, we obtain

F
h1

0

5 a+c
2
j1−

1
2
j −1−

a
2
j2 6 u21

+F
h1

0

5 a+c
2
j2+

1
2
j −2−

a
2
j1 6v21+

1
2

(j1u
2
1−j2v

2
1)
h1
0

[
c
2
F
h1

0
(j1f

2
1+j2g

2
1) (74)

Integrating by parts, using Cauchy–Schwarz inequality, and the
boundary conditions, we obtain

F
1

h1

1 c
2
j3−

1
4
Ej'3 2 r2g+

E

2
F
1

h1
j3(r

−

g)
2

−
1
4
Ej −3(h1) r

2
g(h1)+

1
2
Ej3(h1) r

−

g(h1) rg(h1)

[
c
2
F
1

h1
j3f

2
g (75)

Assuming that j2(h1)=0, the boundary terms become

1
2(j1u

2
1−j2v

2
1)
h1
0 +

1
2 Ej3(h1) r

−

g(h1) rg(h1)

=1
2(j1(h1) u21(h1)+Ej3(h1) r

−

g(h1) rg(h1)−j1(0) u21(0)+j2(0) v21(0)) (76)

Using the coupling boundary conditions, we obtain

Ej3(h1) r
−

g(h1) rg(h1)=4j3(h1)(v1(h1) rg(h1)− 1
2 r
2
g(h1))

=−2r2g(h1) j3(h1)+4j3(h1) v1(h1) rg(h1)

\ −2j3(h1) v21(h1)−4j3(h1) r
2
g(h1) (77)

On the other hand we have

j2(0) v21(0)=j2(0) v21(h1)−2bj2(0) F
h1

0
v21+2aj2(0) F

h1

0
v1u1+2cj2(0) F

h1

0
v1g1
(78)
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Hence combining (74), (75), (77), and (78), we obtain

F
h1

0

5 a+c
2
j1−

1
2
j −1−

a
2
j2−aj2(0)6 u21

+F
h1

0

5 a+c
2
j2+

1
2
j −2−

a
2
j1−(a+c+2b) j2(0)6 v21

+F
1

h1

1 c
2
j3−

1
4
Ej'3 2 r2g+

E

2
F
1

h1
j3(r

−

g)
2+

1
2

(j1(h1) u21(h1)−j1(0) u21(0))

−
1
4
Ej −3(h1) r

2
g(h1)−4j3(h1) r

2
g(h1)+(j2(0)−j3(h1)) v21(h1)

[
c
2
F
1

h1
j2f

2
g+

c
2
F
h1

0
(j1f

2
1+(j2+2j2(0)) g21)

We shall construct j1, j2, and j3 such that

a+c
2
j1−

1
2
j −1−

a
2
j2−aj2(0) >

c
2
j1

b
2
j2+

1
2
j −2−(a+c+2b) j2(0) >

c
2
j2+cj2(0)

c
2
j3−

1
4
Ej'3 >

c
2
j3

j2(0)−2j3(h1) > A1

j1(h1) > B1

where A1 and B1 are positive constants. It is possible to construct j1, j2,
and j3 positive functions, bounded below and above, such that all of the
above requirements are satisfied. We then conclude that the operator
(un1, vn1, r

n
g) Q (un+11 , vn+11 , rn+1g ) is a contraction with a constant of contrac-

tion < 1.

4. COUPLING OF KINETIC AND THEIR HYDRODYNAMIC LIMITS:

THE MODEL (b)

Let X=]0, 1[ and assume now that the hydrodynamic theory gives a
good approximation everywhere except on the boundary. Then we take
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X1=]0, h1[ (0 < h1 < 1) where h1 is small, and X2=X. Our proposed
model consists then of the following physical model: the kinetic model
(here the Carleman model) used in X1, which is a small neighborhood of
the surface and its hydrodynamic approximation (here the Navier–Stokes
like equation) used globally in X2,

“u1
“t

+
“u1
“x

=a(v1−u1), x ¥ ]0, h1[, t > 0, (79)

“v1
“t

−
“v1
“x

=a(u1−v1), x ¥ ]0, h1[, t > 0, (80)

u1(t, 0)=g(t) v1(t, h1)=
1
2
1 rg+

E

2
“rg

“x
2 (t, h1), t > 0, (81)

u1(0, · )=u10 v1(0, · )=v10, x ¥ ]0, h1[ (82)

“rg

“t
−

1
2
E
“
2rg

“x2
=0, x ¥ ]0, 1[, t > 0, (83)

“rg

“x
(., 0)=

2
E

v1(., 0) rg(t, 1)=h(t), t > 0 (84)

rg(0, · )=rg0, x ¥ ]0, 1[ (85)

where u10, v10, and rg0 are given nonegative given functions. The transmis-
sion boundary condition (81) at x=h1 is obtained using the hydrodynamic
limit analysis of Section 2, while the transmission condition (84) at x=0 is
obtained using the kinetic definition of the flux “rg

“x . The resulting model is
called the model (b). As for the model (a) it is clear using the analysis of
Section 2 that the model (b) is rigorously justified. Notice that Problems
(79)–(82) and (83)–(85) are only coupled by their boundary conditions.
Therefore they can be solved by two independent solution techniques.

4.1. Existence Theory

In this paragraph, we shall study the existence and uniqueness of a
solution for the coupled problem (79)–(85). We shall work in the Hilbert
space

H=(L2[0, h1])2×(L2[0, 1]),

with the following norm

||(w1, w2, w3)||=(||w1 ||
2
L2[0, h1]+||w2 ||

2
L2[0, h1]+||w3 ||

2
L2[0, 1])

1
2
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We have the following result.

Theorem 4.1. Assume that (u10, v10, rg0) ¥ H, then the coupled
problem (79)–(85) has a unique strong solution (u1, v1, rg).

We shall give the proof of this theorem for the homogeneous bound-
ary conditions: g(t)=0 and h(t)=0. By a standard argument the proof in
the nonhomogeneous case can be reduced to the homogeneous case. We
proceed as in the previous section.

We introduce an operator A on H as follows

A(w1, w2, w3)=R
w −1+a(w1−w2)

−w −2+a(w2−w1)

− 1
2Ew

'

3

S , (86)

D(A)=˛
(w1, w2, w3) ¥ H | w −1, w −2 ¥ L2[0, h1], andw3 ' ¥ L2[0, 1]

w1(0)=0, w2(h1)=
1
2w3(h1)+

E
4w
−

3(h1), w −3(0)=2
Ew2(0),

andw3(1)=0

ˇ .
It is clear that D(A) is dense in H. We shall use the Hille–Yosida

theorem. Let l be a real number and let f ¥ X. We shall study the problem

findw ¥ D(A) solution of Aw+lw=f, (87)

which corresponds to finding w ¥ D(A) such that

w −1+(a+l) w1−aw2=f1, (88)

−w −2+(a+l) w2−aw1=f2, (89)

− 1
2Ew

'

3+lw3=f3, (90)

By a density argument we may assume that f1, f2, and f3 are con-
tinuous. By elementary methods it is easy to obtain the general solution of
System (88)–(90).

We shall now prove that (w1, w2, w3) satisfies

||w||j [
1
l−2

||f||j -l > 2 (91)

where ||w||j is a norm equivalent to the norm || · || to be precised later.
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Let j1, j2, and j3 be three positive functions (of x only) to be precised
later. Multiplying Eqs. (88)–(90) respectively by j1w1 , j2w2, and j3w3,
integrating by parts, and using Cauchy–Schwarz inequality, we obtain

F 5 a+l
2
j1−

1
2
j −16 w21+

1
2

(j1w
2
1)
h1
0

−
a
2
F j1w22+F 5 a+l

2
j2+

1
2
j −26 w22−

1
2

(j2w
2
2)
h1
0

−
a
2
F j2w21+F 1 l

2
j3−

E

4
j'3 2 w23+

1
2
E F j3(w −3)2+

E

4
(j −3w

2
3)
1
0−

1
2
E(j3w

−

3w3)
1
0

[
1
2l

F j1f21+
1
2l

F j2f22+
1
2l

F j3f23 (92)

On the other hand we have

j2(0) w22(0)=j2(0)(w22(0)−w22(h1))+j2(0) w22(h1)

w22(0)−w22(h1)=2 F
h1

0
(−w −2w2)

=2 1 Fh1
0

f2w2+a F
h1

0
w1w2−(a+l) F

h1

0
w222

[
1
l

||f2 ||
2
0+a F

h1

0
w21

Pluging this in (92), we obtain

F 5 a+l
2
j1−

1
2
j −1−

a
2

(j2(0)−j3(0))−
a
2
j2 6 w21

+F 5 a+l
2
j2+

1
2
j −2−

a
2
j1 6 w22+F 5 l

2
j3−

E

4
j'3 6 w23+

1
2
E F j3(w −3)2

+
1
2
5j1(h1) w21(h1)+(j2(0)−j2(h1)−j3(0)) w22(h1)

+1 − E
2
j −3(0)−j3(0)2 w23(0)6

[
1
2l

F j1f21+
1
2l

F j2f22+
1
2l

(j2(0)−j3(0)) F f22+
1
2l

F j3f23 (93)
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We shall construct j1, j2, and j3 such that they are positive functions,
have lower and upper positive bounds independent of l and such that

a+l
2
j1−

1
2
j −1−

a
2

(j2(0)−j3(0))−
a
2
j2 > A1 > 0

a+l
2
j2+

1
2
j −2−

a
2
j1 > A2 > 0

l

2
j3−

E

4
j'3 > A3 > 0

j2(0)−j2(h1)−j3(0) > A4 > 0

−
E

2
j −3(0)−j3(0) > A5 > 0

where A1, A2, A3, A4, andA5 are positive constants independent of l. It is
possible to construct j1, j2, and j3, positive, independent on l, and
bounded below and above by positives constants, satisfy

a+l
2
j1−

1
2
j −1−

a
2

(j2(0)−j3(0))−
a
2
j2=

l

2
j1

a+l
2
j2+

1
2
j −2−

a
2
j1=

l

2
j2

−
E

2
j'3=

Ek
2
j3

and such that all of the above requirements are satisfied and such that
j2 [ j2(0). Here k is a positive number whose value is determined by the
last condition in the set of requirements. We then conclude that:
||w||j [

1
l−2 ||f||j -l > 2, where ||w||j=> j1w21+> j2w22+> j3w23. The proof

of the theorem is then a consequence of Hille–Yosida theorem.

4.2. Asymptotic Analysis of the Coupled System

As in Section 3.2 we shall assume that there are nonegative constants g
and h such that: limtQ. g(t)=g and limtQ. h(t)=h. We shall also assume
that ah1 > 2 (a=1

E). Then we have the following result about the large time
behaviour of the solution of the coupled problem (79)–(85).

Theorem 4.2. Assume that u10, v10 ¥ L2[0, h1] and rg0 ¥ L2[0, 1].
Then the solution of the coupled problem (79)–(85) converges as t tends to
+. to the solution of the corresponding steady problem.
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Proof. As in the previous paragraph, without loss of generality, we
may assume that g=g(t)=0 and h=h(t)=0. Let (us, vs, rs) denote the
solution of the steady problem corresponding to Problem (79)–(85). Such
steady solution exists and is unique. Let ū1, v̄1, and r̄g be defined as follows

ū1=u1−us and v̄1=v1−vs, x ¥ ]0, h1[, t > 0,

r̄g=rg−rs, x ¥ ]0, 1[, t > 0,
(94)

where (u1, v1, rg) is the solution of the coupled problem (79)–(85). We then
have

“ū1
“t

+
“ū1
“x

=a(v̄1−ū1), x ¥ ]0, h1[, t > 0, (95)

“v̄1
“t

−
“v̄1
“x

=a(ū1−v̄1), x ¥ ]0, h1[, t > 0, (96)

ū1(t, 0)=0 v̄1(t, h1)=
1
2
1 r̄g+

E

2
“r̄g

“x
2 (t, h1), t > 0, (97)

“r̄g

“t
−
E

2
“
2rg

“x2
=0, x ¥ ]0, 1[, t > 0, (98)

“r̄g

“x
(t, 0)=

2
E

v1(t, 0) r̄g(t, 1)=0, t > 0, (99)

ū1(0, · )=ū10 v̄1(0, · )=v̄10 r̄g(0, · )=r̄g0. (100)

We shall omit the bar sign. Let j1, j2 and j3 be three nonegative
functions independent of t to be precised later. Multiplying Eqs. (95), (96)
and (98) respectively by j1u1, j2v2 and j3rg, integrating over [0, h1]
respectively [0, 1], using Cauchy–Schwarz inequality, and combining the
resulting inequalities, we obtain

d
dt
5 Fh1

0
(j1u

2
1+j2v

2
1)+F

1

0
j3r

2
g
6+F

h1

0
(−j1x+a(j1−j2)) u21

+F
h1

0
(j2x+a(j2−j1)) v21+E F

1

0
j3 :
“rg

“x
: 2− E

2
F
1

0
j'3r

2
g

+
E

2
(j −3r

2
g)
1
0− E 1j3rg

“rg

“x
21
0
+(j1u

2
1−j2v

2
1)
h1
0 [ 0 (101)
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Using the coupling boundary conditions, we obtain

E

2
1 −j −3(0) r2g(0)+2j3(0) rg(0)

“rg

“x
(0)2

=−
E

2
j −3(0) r2g(0)+j3(0) rg(0) v1(0)

[ −
E

2
j −3(0) r2g(0)+j3(0) r2g(0)+j3(0) v21(0) (102)

Combining (102) and (101), and assuming that j2(h1)=0, we obtain

d
dt
5 Fh1

0
(j1u

2
1+j2v

2
1)+F

1

0
j3r

2
g
6+F

h1

0
(−j1x+a(j1−j2)) u21

+F
h1

0
(j2x+a(j2−j1)) v21+E F

1

0
j3 :
“rg

“x
: 2− E

2
F
1

0
j'3r

2
g

+j1(h1) u21(h1)+(j2(0)−j3(0)) v21(0)+1 − E
2
j −3(0)−j3(0)2 r2g(0)

[ 0 (103)

We shall construct j1, j2 and j3 such that

−j1x+aj1−aj2=k1 on ]0, h1[

j2x+aj2−aj1=k2 on ]0, h1[

−
E

2
j'3=

Ek
2
j3 on ]0, 1[,

j2(0)−j3(0) > 0

−
E

2
j −3(0)−j3(0) > 0

where k1 and k2 are positive constants. It is then possible to choose
k1 > 0, k2 > 0 and k > 0, and construct j1, j2, and j3 positive functions,
bounded below and above such that all of the above requirements are
satisfied. The conclusion of the proof of the theorem is then a consequence
of Gronwall lemma. We then obtain the exponential decay as t goes to .
of the solution (u1, v1, rg).
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4.3. Convergence Analysis of the Transmission Time

Marching Algorithm

In this paragraph, we shall propose an algorithm for the solution of
the coupled problem (79)–(85). We then prove that the resulting algorithm
converges. We shall make the same assumptions under which we obtained
the large time behaviour for the coupled system. Namely, we assume that
there are nonegative constants g and h such that: limtQ. g(t)=g and
limtQ. h(t)=h, and ah1 > 2 (a=1

E).
Here we will not apply the transmission time marching algorithm

directly to the problem (79)–(85). We instead apply this algorithm to an
equivalent problem. The problem (79)–(85) is equivalent to the following
moments formulation

“rl

“t
+
“ml
“x

=0, x ¥ ]0, h1[, t > 0 (104)

“ml
“t

+
“rl

“x
=−aml, x ¥ ]0, h1[, t > 0 (105)

1
2

(rl(t, 0)+ml(t, 0))=g(t), rl(t, h1)=rg(t, h1), t > 0, (106)

“rg

“t
−

1
2
E
“
2rg

“x2
=0, x ¥ ]0, 1[, t > 0, (107)

“rg

“x
(t, 0)=−

2
E

ml(t, 0), rg(t, 1)=h(t), t > 0, (108)

rl(0, · )=u10+v10, ml(t, · )=u10−v10, rg(t, · )=rg0, (109)

where rl=u1+v1 and ml=u1−v1. Here, without loss of generality, we
assume that g=g(t)=0 and h=h(t)=0. If we apply the transmission time
marching algorithm to Problem (104)–(109), we obtain

rn+1l −rnl
Dt

+
dmn+1

l

dx
=0 on ]0, h1[, (110)

mn+1
l −mn

l

Dt
+

drn+1l

dx
=−amn+1

l on ]0, h1[, (111)

rn+1l (0)+mn+1
l (0)=0, rn+1l (h1)=r

n+1
g (h1) (112)
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rn+1g −rng
Dt

−
1
2
E

d2rn+1g

dx2
=0 on ]0, 1[, (113)

drn+1g

dx
(0)=−

2
E

mn
l(0), rg(1)=0, (114)

r0l=u10+v10, m0
l=u10−v10, r0g=rg0. (115)

The convergence of the algorithm (110)–(115) is stated in the following
theorem.

Theorem 4.3. The algorithm (110)–(115) converges as n tends to ..

Remark. We observe that applying the transmission time marching
algorithm to either the original problem (79)–(85) or its equivalent moment
formulation (104)–(109) yields the same solution. However, it turns out
that the analysis of the algorithm (110)–(115) is technically easier than the
one obtained by using a direct application of the transmission time march-
ing algorithm to Problem (79)–(85).

Proof. Introducing the notations c= 1
Dt , b=a+c, rl=r

n+1
l , fl=r

n
l ,

ml=mn+1
l , gl=mn

l , rg=r
n+1
g , and fg=r

n
g, the algorithm (110)–(115) be-

comes

crl+m −

l=cfl on ]0, h1[, (116)

bml+r
−

l=cgl on ]0, h1[, (117)

rl(0)+ml(0)=0, rl(h1)=rg(h1) (118)

crg−
1
2
E

d2rg
dx2

=cfg on ]0, 1[, (119)

r −g(0)=−2agl(0), rg(1)=0, (120)

Let j1 and j2 be two positive functions to be precised later. Multi-
plying Eq. (116) by j1rl, and Eq. (117) by j1ml, adding the resulting
equations, and using Cauchy–Schwarz inequality, we obtain

F
h1

0

1 c
2
j1−

1
2
j −12 r2l+F

h1

0

11b−
c
2
2 j1−

1
2
j −12 m2

l+(mlj1rl)
h1
0

[
c
2
F
h1

0
j1(f2l+g2l) (121)

Coupling of Kinetic Equations and Their Hydrodynamic Limits 285



On the other hand multiplying Eq. (119) by j2rg, integrating by parts
and using Cauchy–Schwarz inequality and the boundary conditions, we
obtain

F
1

0

1 c
2
j2−

1
4
Ej'2 2 r2g+

E

2
F
1

0
j2(r

−

g)
2−

1
4
Ej −2(0) r2g(0)+

1
2
Ej2(0) r −g(0) rg(0)

[
c
2
F
1

0
j2f

2
g (122)

Using the coupling boundary conditions, we get

| 12Ej2(0) r −g(0) rg(0)|=|j2(0) gl(0) rg(0)| [ 1
2j2(0)2 g2l(0)+1

2 r
2
g(0) (123)

For the term j1(h1) ml(h1) rl(h1), we first have

ml(h1)=ml(0)+F
h1

0
m −

l, rl(h1)=rl(0)+F
h1

0
r −l

Using Cauchy–Schwarz inequality, we then obtain

|ml(h1) rl(h1)| [ m2
l(0)+r2l(0)+h1 F

h1

0
((m −

l)
2+(r −l)

2)

[ m2
l(0)+r2l(0)+2h1 5 F

h1

0
(c2(f2l+r

2
l)+(b2m2

l+c2g2l))6

Hence using the boundary conditions we have

j1(h1) |ml(h1) rl(h1)|

[ 2j1(h1) r
2
l(0)+2h1j1(h1)5 F

h1

0
(c2(f2l+r

2
l)+(b2m2

l+c2g2l))6 (124)

Combining (121), (122), (123), and (124), we then obtain

F
h1

0

1c
2
j1−

1
2
j −1−2h1j1(h1) c22 r2l+F

h1

0

11b−
c
2
2 j1−

1
2
j −1−2h1j1(h1) b22 m2

l

+F
1

0

1 c
2
j2−

1
4
Ej'2 2 r2g+

E

2
F
1

0
j2(r

−

g)
2−

1
4
Ej −2(0) r2g(0)

+
1
2
Ej2(0) r −g(0) rg(0)+j1(0) r2l(0)
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[ 2j1(h1) r
2
l(0)+F

h1

0

1 c
2
j1+2c2h1j1(h1)2 f2l

+F
h1

0

1 c
2
j1+2c2h1j1(h1)2 g2l+

c
2
F
1

0
j2f

2
g (125)

We shall now construct j1 and j2 such that

c
2
j1−

1
2
j −1−2h1j1(h1) c2 >

c
2
j1+2h1j1(h1) c2

1b−
c
2
2 j1−

1
2
j −1−2h1j1(h1) b2 >

c
2
j1+2h1j1(h1) c2

j1(0)−2j1(h1) >
1
2
j22(0)

c
2
j2−

1
4
Ej'2 >

c
2
j2

−
1
4
Ej −2(0) >

1
2

We first consider the equation

− 1
4 Ej

'

2=A

where A is a positive constant. The solution is given by

j2(x)=j2(0)+j −2(0) x−
2
E

Ax2 (126)

So if we choose for example

j −2(0)=−
3
E

A=
E

2

then j2(x)=j2(0)−
3
E

x−x2 > c1 > 0

and if j2(0)=1 3
E
+32 then j2(x) >

3
E

(1−x)+(1−x2)+2 > 1

(127)
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We shall choose j1 in the form

j1(x)=j1(0)−2Bx

B=a(b2+c2) h1j1(h1) a > 0

j1(h1)=j1(0)−2Bh1

=j1(0)−2a(b2+c2) h21j1(h1)

j1(h1)=
1

1+2a(b2+c2) h21
j1(0)

(128)

Hence we have

j1(x)=j1(0)−2Bx

=j1(0)−2a(b2+c2) h1
1

1+2a(b2+c2) h21
j1(0) x

=j1(0) 11−2a(b2+c2) h1
1

1+2a(b2+c2) h21
x2

> 0 for j1(0) > 0 (129)

We want j1(0) to satisfy

j1(0) > 2j1(h1)+
1
2 j

2
2(0)

We then choose B such that

B > 2(b2+c2) h1j1(h1)

This condition is satisfied if a > 2. Hence we have

j1(0) 11−
2

1+2a(b2+c2) h21
2 > 1

2
j22(0)=

1
2

(3a+3)2

Since ah1 > 2 (h1 > 2E), we have

1+2a(b2+c2) h21 > 1+2a
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Therefore we have

1 −
2

1+2a(b2+c2) h2
1

>
2a

1+2a
> 0

So if we choose

j1(0) >
1+2a(b2+c2) h2

1

2a(b2+c2) h2
1 − 1

1
2

j2
2(0),

all of the requirments imposed upon the construction of j1 and j2 are
satisfied. We conclude then that the operator in (125) is contractant with a
constant of contraction less than 1. The proof of the theorem is then
established.

Remark. It is important to notice that the convergence of the
numerical algorithm is obtained under the same condition (ah1 > 2) under
which we obtained the large time behaviour of the coupled system
(Theorem 4.2). There were no restrictions imposed upon the time step Dt.

5. CONCLUSION

In this paper we have provided a rigorous derivation of the coupling
of kinetic and their hydrodynamic limits for a simplified kinetic model. We
have proved global convergence of Chapman–Enskog expansion for this
model. We studied two types of coupling: the (a) and (b) models. For each
model we established the existence theory and the large time behaviour of
the solution. We also proposed algorithms for the solution of these models
and we established the convergence theory of the resulting algorithms.
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d’écoulements externes, Ph.D. thesis, Université de Paris Dauphine (1992).

24. M. D. Tidriri, Domain Decomposition for Incompatible nonlinear models, INRIA
Research Report RR-2378 (October 1994).

25. M. D. Tidriri, Domain decompositions for compressible Navier–Stokes equations with
different discretizations and formulations, J. Comp. Phys. 119:271–282 (1995).

26. M. D. Tidriri, Asymptotic analysis of a coupled system of kinetic equations, C. R. Acad.
Sci. Paris, t. 328, Série I Math. 637–642 (1999).

27. M. D. Tidriri, Numerical analysis of coupling for a kinetic equation, Mathematical
Modelling and Numerical Analysis M2AN, Vol. 33, No. 6, pp. 1121–1134 (1999).

28. X. Zhong, R. W. MacCormack, and D. R. Chapman, AIAA J. 31:6 (1993).

290 Tidriri


	1 INTRODUCTION
	2 THE KINETIC EQUATIONS AND THEIR 
	3 COUPLING OF KINETIC AND THEIR HY
	4 COUPLING OF KINETIC AND THEIR HY
	5 CONCLUSION
	6 ACKNOWLEDGMENTS

